论文标题

在某些涉及两个正整数的GCD和LCM的算术函数上

On certain sums of arithmetic functions involving the gcd and lcm of two positive integers

论文作者

Heyman, Randell, Tóth, László

论文摘要

我们获得了双曲线求和$ \ sum_ {mn \ le x} f(((m,n))$和$ \ sum_ {mn \ le x} f([m,n])$,其中$ f $ a arithmetic函数的某些类别,$(m,n)$,n)$ [m,n)$ [m,n)$ [m,n) $ m,n $。特别是,我们研究功能$ f(n)=τ(n),\ log n,ω(n)$和$ω(n)$。我们还定义了后三个函数的共同概括,并证明了相应的结果。

We obtain asymptotic formulas with remainder terms for the hyperbolic summations $\sum_{mn\le x} f((m,n))$ and $\sum_{mn\le x} f([m,n])$, where $f$ belongs to certain classes of arithmetic functions, $(m,n)$ and $[m,n]$ denoting the gcd and lcm of the integers $m,n$. In particular, we investigate the functions $f(n)=τ(n), \log n, ω(n)$ and $Ω(n)$. We also define a common generalization of the latter three functions, and prove a corresponding result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源