论文标题
预测流动应力和主要产量机制:基于离散位错可塑性的分析模型
Predicting the flow stress and dominant yielding mechanisms: analytical models based on discrete dislocation plasticity
论文作者
论文摘要
位错是结晶材料中可塑性的载体。他们的集体相互作用行为取决于应变率和样本量。在小样本中,成核过程的细节特别重要。在目前的工作中,进行离散位错动力学(DDD)模拟,以研究直径为100至800 nm的单晶铜支柱中的主要屈服机制。根据我们的应变速率和样本量不同的模拟,我们观察到相关成核机制从“位错乘法”到“表面成核”的过渡。建立了两个基于物理的分析模型,以定量预测此转变,并与我们的DDD仿真数据以及可用的实验数据显示了不同的应变率的良好一致性。因此,提出的分析模型有助于了解不同的物理参数和成核机制之间的相互作用,并且非常适合估计不同材料特性和给定负载条件下的材料强度。
Dislocations are the carriers of plasticity in crystalline materials. Their collective interaction behavior is dependent on the strain rate and sample size. In small specimens, details of the nucleation process are of particular importance. In the present work, discrete dislocation dynamics (DDD) simulations are performed to investigate the dominant yielding mechanisms in single crystalline copper pillars with diameters ranging from 100 to 800 nm. Based on our simulations with different strain rates and sample size, we observe a transition of the relevant nucleation mechanism from "dislocation multiplication" to "surface nucleation". Two physics-based analytical models are established to quantitatively predict this transition, showing a good agreement for different strain rates with our DDD simulation data and with available experimental data. Therefore, the proposed analytical models help to understand the interplay between different physical parameters and nucleation mechanisms and are well suitable to estimate the material strength for different material properties and under given loading conditions.