论文标题

杂化度量 - 帕拉蒂尼重力中的动态虫洞几何形状

Dynamic wormhole geometries in hybrid metric-Palatini gravity

论文作者

Zangeneh, Mahdi Kord, Lobo, Francisco S. N.

论文摘要

在这项工作中,我们分析了弗里德曼·莱玛·罗伯森(Friedmann-Lema-Robertson-Walker)在杂交度量 - 帕拉蒂尼重力的标量表示的背景下,在弗里德曼 - 罗马·罗伯逊步行者背景下分析了时间依赖性的蠕虫几何形状的演变。我们根据背景数量,标量场,比例因子和形状函数来推断物质螺纹的能量摩托车概况,并通过考虑在后台物质的状态方程来找到特定的虫洞溶液。我们发现,特定案例始终满足无效和弱的能量条件。除了状态的正压方程外,我们还通过对螺纹螺纹螺纹的无可透性能量弹药张量施加了特定的不断发展的虫洞时空,并发现该几何形状也始终满足了无效和弱的能量条件。

In this work, we analyse the evolution of time-dependent traversable wormhole geometries in a Friedmann-Lemaître-Robertson-Walker background in the context of the scalar-tensor representation of hybrid metric-Palatini gravity. We deduce the energy-momentum profile of the matter threading the wormhole spacetime in terms of the background quantities, the scalar field, the scale factor and the shape function, and find specific wormhole solutions by considering a barotropic equation of state for the background matter. We find that particular cases satisfy the null and weak energy conditions for all times. In addition to the barotropic equation of state, we also explore a specific evolving wormhole spacetime, by imposing a traceless energy-momentum tensor for the matter threading the wormhole and find that this geometry also satisfies the null and weak energy conditions at all times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源