论文标题

在自我监管的生成对抗网络中探索DeShufflegans

Exploring DeshuffleGANs in Self-Supervised Generative Adversarial Networks

论文作者

Baykal, Gulcin, Ozcelik, Furkan, Unal, Gozde

论文摘要

生成对抗网络(GAN)已成为解决图像生成问题的最常用网络。后来提出了自我监督的gan,以避免灾难性忘记歧视者,并提高图像产生质量而无需类标签。但是,以前没有研究过在不同gan体系结构上的自学任务的普遍性。为此,我们广泛地分析了先前提出的自我实施任务的贡献,即在普遍性的环境中取消对DeShufflegans的贡献。我们为两个不同的GAN歧视者分配了撤离任务,并研究了任务对两个体系结构的影响。与先前提出的各种数据集上的DeShufflegans相比,我们扩展了评估。我们表明,与其他自我监督的gan相比,Deshufflegan获得了几个数据集的最佳FID结果。此外,我们将除法与首先部署到GAN训练的旋转预测进行了比较,并证明其贡献超过了旋转预测。我们设计了有条件的DeShufflegan,称为Cdeshufflegan,以评估学习表现的质量。最后,我们展示了自我实施任务对损失格局的GAN培训的贡献,并表明这些任务的影响可能与某些情况下的对抗性培训可能不合作。我们的代码可以在https://github.com/gulcinbaykal/deshuffgan上找到。

Generative Adversarial Networks (GANs) have become the most used networks towards solving the problem of image generation. Self-supervised GANs are later proposed to avoid the catastrophic forgetting of the discriminator and to improve the image generation quality without needing the class labels. However, the generalizability of the self-supervision tasks on different GAN architectures is not studied before. To that end, we extensively analyze the contribution of a previously proposed self-supervision task, deshuffling of the DeshuffleGANs in the generalizability context. We assign the deshuffling task to two different GAN discriminators and study the effects of the task on both architectures. We extend the evaluations compared to the previously proposed DeshuffleGANs on various datasets. We show that the DeshuffleGAN obtains the best FID results for several datasets compared to the other self-supervised GANs. Furthermore, we compare the deshuffling with the rotation prediction that is firstly deployed to the GAN training and demonstrate that its contribution exceeds the rotation prediction. We design the conditional DeshuffleGAN called cDeshuffleGAN to evaluate the quality of the learnt representations. Lastly, we show the contribution of the self-supervision tasks to the GAN training on the loss landscape and present that the effects of these tasks may not be cooperative to the adversarial training in some settings. Our code can be found at https://github.com/gulcinbaykal/DeshuffleGAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源