论文标题
依靠小脑预测学习的完全尖峰神经系统对机器人的视觉控制
Vision-Based Control for Robots by a Fully Spiking Neural System Relying on Cerebellar Predictive Learning
论文作者
论文摘要
小脑在我们的运动控制系统中起着独特的作用,以实现罚款和协调的运动。尽管小脑病变并不能完全损失运动功能,但动作和感知都受到严重影响。因此,假定小脑使用内部正向模型通过从感觉状态中的误差中学习来提供预期信号。在一些研究中,证明学习过程依赖于关节空间误差。但是,这可能不存在。这项工作提出了一种新颖的尖峰神经系统,该系统依赖于细胞小脑模型的前进预测学习。由于任务空间中的感觉反馈,并且它是史密斯的预测因子,因此可以学习前向模型。后者可以预测在机器人臂操纵器的视觉致密任务中,在差分映射尖峰神经网络中输入的感觉校正。在本文中,我们促进了开发的控制系统,以实现更准确的目标实现动作,并通过小脑预测能力减少机器人达到任务的运动执行时间。
The cerebellum plays a distinctive role within our motor control system to achieve fine and coordinated motions. While cerebellar lesions do not lead to a complete loss of motor functions, both action and perception are severally impacted. Hence, it is assumed that the cerebellum uses an internal forward model to provide anticipatory signals by learning from the error in sensory states. In some studies, it was demonstrated that the learning process relies on the joint-space error. However, this may not exist. This work proposes a novel fully spiking neural system that relies on a forward predictive learning by means of a cellular cerebellar model. The forward model is learnt thanks to the sensory feedback in task-space and it acts as a Smith predictor. The latter predicts sensory corrections in input to a differential mapping spiking neural network during a visual servoing task of a robot arm manipulator. In this paper, we promote the developed control system to achieve more accurate target reaching actions and reduce the motion execution time for the robotic reaching tasks thanks to the cerebellar predictive capabilities.