论文标题
时间分数G-Bénard方程的解决方案较弱
Weak solutions to the time-fractional g-Bénard equations
论文作者
论文摘要
在本文中,我们介绍了$ \ Mathbb r^2 $的订单$α\ in(0,1)$的时间折叠导数。该方程模型,在G框架中考虑的分形介质中液体的内存依赖性热传导。我们旨在通过Navier-Stokes方程理论和分数演算理论的标准技术来研究弱解决方案的存在和独特性。
In this paper, we introduce the g-Bénard equations with time-fractional derivative of order $α\in (0, 1)$ in domains of $\mathbb R^2$. This equations model, the memory-dependent heat conduction of liquids in fractal media considered in g-framework. We aim to study the existence and uniqueness of weak solutions by means of standard techniques from Navier-Stokes equations theory and fractional calculus theory.