论文标题
联想代数的一些嵌入结果
Some embedding results for associative algebras
论文作者
论文摘要
假设我们希望以某种指定的方式嵌入(关联)$ k $ -Algebra $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ r $;例如,通过两个元素或给定的$ k $ -Algebras $ a_1,$ $ a_2,$ $ a_3的副本。$几位作者获得了足够的条件,可以使这种嵌入存在。我们在这里证明了有关此主题的进一步结果。特别是,我们将基于两个生成元素的现有构造的想法和三个给定的<i> subergebra </i>融合在一起,以使用两个给定的亚代词来进行构造。 我们对如何进一步加强这些结果提出了一些问题。
Suppose we wish to embed an (associative) $k$-algebra $A$ in a $k$-algebra $R$ generated in some specified way; e.g., by two elements, or by copies of given $k$-algebras $A_1,$ $A_2,$ $A_3.$ Several authors have obtained sufficient conditions for such embeddings to exist. We prove here some further results on this theme. In particular, we merge the ideas of existing constructions based on two generating <i>elements</i>, and on three given <i>subalgebra</i>, to get a construction using two given subalgebras. We pose some questions on how these results can be further strengthened.