论文标题

有限能源无限簇无锚固

Finite-energy infinite clusters without anchored expansion

论文作者

Pete, Gábor, Timár, Ádám

论文摘要

Hermon和Hutchcroft最近证明了一个长期的猜想,即在任何p> p_c(g)上,在伯努利(P)键渗透中,其来源群是有限的,但在n中呈指数呈指数呈指数niffen natifeR n earge。必然的是,所有无限簇几乎肯定都锚定了膨胀。他们询问这些结果是否可以更普遍地保持,以实现任何有限的能量千古不变的渗透。我们给出一个反例,在4型树上不变的渗透。

Hermon and Hutchcroft have recently proved the long-standing conjecture that in Bernoulli(p) bond percolation on any nonamenable transitive graph G, at any p > p_c(G), the probability that the cluster of the origin is finite but has a large volume n decays exponentially in n. A corollary is that all infinite clusters have anchored expansion almost surely. They have asked if these results could hold more generally, for any finite energy ergodic invariant percolation. We give a counterexample, an invariant percolation on the 4-regular tree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源