论文标题

海德堡紧凑型电子束离子陷阱

The Heidelberg compact electron beam ion traps

论文作者

Micke, P., Kühn, S., Buchauer, L., Harries, J. R., Bücking, T. M., Blaum, K., Cieluch, A., Egl, A., Hollain, D., Kraemer, S., Pfeifer, T., Schmidt, P. O., Schüssler, R. X., Schweiger, Ch., Stöhlker, T., Sturm, S., Wolf, R. N., Bernitt, S., López-Urrutia, J. R. Crespo

论文摘要

电子束离子陷阱(EBIT)是高度带电离子(HCI)生产和研究的理想工具。为了减少其构建,维护和运营成本,我们开发了一种新颖,紧凑的室温设计,即海德堡紧凑型EBIT(HC-EBIT)。已经有四个已经委托的设备在最强的磁场(最高0.86吨)使用的EBIT据报道,使用永久磁铁,运行高达80 mA的电子束电流,并且能量高达10 keV。他们证明了脉冲Ar $^{16+} $束的HCI产生,捕获和提取,并连续100 pa ion束高电荷XE到充电状态29+,已经带有4 MA,2 KEV电子束。此外,HC-Ebits提供大型的固体角度端口,因此具有较高的光子计数率,例如。 g。,在HCIS中的电介质重组的X射线光谱中,最高为Fe $^{24+} $,在5 KeV中实现了$ e/δe> 1500 $的电子能量解析能力。除了传统的轴上电子枪外,我们还为激光,同步加速器和自由电子激光应用实施了新型的离轴枪,并在陷阱轴上提供了清晰的光学访问。我们报告了其在同步辐射设施中的第一次操作,证明了高电动氧的共振光激发。

Electron beam ion traps (EBIT) are ideal tools for both production and study of highly charged ions (HCI). In order to reduce their construction, maintenance, and operation costs we have developed a novel, compact, room-temperature design, the Heidelberg Compact EBIT (HC-EBIT). Four already commissioned devices operate at the strongest fields (up to 0.86 T) reported for such EBITs using permanent magnets, run electron beam currents up to 80 mA and energies up to 10 keV. They demonstrate HCI production, trapping, and extraction of pulsed Ar$^{16+}$ bunches and continuous 100 pA ion beams of highly charged Xe up to charge state 29+, already with a 4 mA, 2 keV electron beam. Moreover, HC-EBITs offer large solid-angle ports and thus high photon count rates, e. g., in x-ray spectroscopy of dielectronic recombination in HCIs up to Fe$^{24+}$, achieving an electron-energy resolving power of $E/ΔE > 1500$ at 5 keV. Besides traditional on-axis electron guns, we have also implemented a novel off-axis gun for laser, synchrotron, and free-electron laser applications, offering clear optical access along the trap axis. We report on its first operation at a synchrotron radiation facility demonstrating resonant photoexcitation of highly charged oxygen.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源