论文标题
使用量子传感器网络对现场性质的最佳测量
Optimal Measurement of Field Properties with Quantum Sensor Networks
论文作者
论文摘要
我们考虑一个耦合到字段$ f的量子传感器网络(\ vec {x}; \vecθ)$通过参数向量$ \vecθ$分析参数化。量子传感器在位置固定在$ \ vec {x} _1,\ dots,\ vec {x} _d $。尽管已知$ f(\ vec {x}; \vecθ)$的功能形式,但参数$ \vecθ$却不是。我们在测量这些参数的任意分析函数$ q(\vecθ)的精度上得出饱和界限,并构建实现这些界限的最佳协议。我们的结果是从量子信息理论和线性编程二元定理的技术组合获得的。它们可以应用于许多问题,包括量子传感器的最佳放置,场插值以及参数化场的功能的测量。
We consider a quantum sensor network of qubit sensors coupled to a field $f(\vec{x};\vecθ)$ analytically parameterized by the vector of parameters $\vecθ$. The qubit sensors are fixed at positions $\vec{x}_1,\dots,\vec{x}_d$. While the functional form of $f(\vec{x};\vecθ)$ is known, the parameters $\vecθ$ are not. We derive saturable bounds on the precision of measuring an arbitrary analytic function $q(\vecθ)$ of these parameters and construct the optimal protocols that achieve these bounds. Our results are obtained from a combination of techniques from quantum information theory and duality theorems for linear programming. They can be applied to many problems, including optimal placement of quantum sensors, field interpolation, and the measurement of functionals of parametrized fields.