论文标题
通过Braunbek方法在傅立叶光学中实现非量表衍射
Implementing non-scalar diffraction in Fourier optics via the Braunbek method
论文作者
论文摘要
傅立叶光学器件是解决许多衍射问题的强大而有效的工具,但依赖于标量衍射理论的假设,并且忽略了衍射元素的三维结构和材料特性。亚级星际外部外观者的最新实验表明,在入射光强度的1E-10处,必须包含这些物理特性。在这里,我们提出了一种实施非量表衍射的方法,同时保持标准傅立叶光学技术的效率和易用性。我们的方法基于Braunbek的方法,其中Kirchhoff边界值被衍射元素边缘的狭窄接缝所取代。在本文中,我们得出了用于实现非量表衍射的衍射方程,并概述了用于求解这些方程的计算实现。我们还提供了实验结果,证明我们的模型可以复制亚尺度星际体育中非量表衍射的观察性特征,实际上将我们的模型验证为在相对强度上比1E-10更好。我们认为,这种方法是一种有效的工具,可以将额外的物理学纳入冠状动脉模型和其他光学系统的模型,其中完整的电磁溶液非常棘手。
Fourier optics is a powerful and efficient tool for solving many diffraction problems, but relies on the assumption of scalar diffraction theory and ignores the three-dimensional structure and material properties of the diffracting element. Recent experiments of sub-scale starshade external occulters revealed that the inclusion of these physical properties is necessary to explain the observed diffraction at 1e-10 of the incident light intensity. Here, we present a methodology for implementing non-scalar diffraction while maintaining the efficiency and ease of standard Fourier optics techniques. Our methodology is based on that of Braunbek, in which the Kirchhoff boundary values are replaced with the exact field in a narrow seam surrounding the edge of the diffracting element. In this paper, we derive the diffraction equations used to implement non-scalar diffraction and outline the computational implementation used to solve those equations. We also provide experimental results that demonstrate our model can replicate the observational signatures of non-scalar diffraction in sub-scale starshades, in effect validating our model to better than 1e-10 in relative intensity. We believe this method to be an efficient tool for including additional physics to the models of coronagraphs and other optical systems in which a full electromagnetic solution is intractable.