论文标题

吸积塔里星的磁制动:质量吸积率,旋转和偶极场强度的影响

Magnetic braking of accreting T Tauri stars: Effects of mass accretion rate, rotation, and dipolar field strength

论文作者

Ireland, Lewis G., Zanni, Claudio, Matt, Sean P., Pantolmos, George

论文摘要

积聚前序列恒星的旋转演变受其与周围壳盘的磁相互作用的影响。使用冥王星代码,我们执行2.5D磁水动力学,轴心对称,时间依赖于星形磁盘相互作用的模拟 - 具有初始的偶极磁场结构,以及粘性和电阻的吸积盘 - 以模拟三种机制,这些机制有助于网络扭矩:稳定扭矩:增强式式驱动器,并调整了元素频道,并启用了玛格尔式的元素和元素(定期)(定期)(定期)(定期)(定期)(定期)。我们研究了恒星磁场强度,旋转速率和质量吸积率(改变初始磁盘密度)如何影响净恒星扭矩。所有模拟都处于净旋转状态。我们适合三种恒星扭矩贡献的半分析函数,从而可以预测我们的参数状态净恒星扭矩,以及使用1D恒星进化代码研究旋转进化的可能性。与孤立的恒星相比,吸积盘的存在似乎提高了恒星扭矩的效率,因为流出速率要比积聚速率小得多,因为与孤立的恒星相比,星磁相互作用会打开更多的恒星磁通量。在我们的参数制度中,质量损失率为$ \ 1 \%$的质量积聚率的恒星风能够提取积聚角动量的$ \ lyssim 50 \%$。这些模拟表明,在我们的参数制度中,在代表性的TAuri情况下实现自旋平衡,例如BP TAU将需要质量增生率的$ \%$ 25 \%$的风质量损失率。

The rotational evolution of accreting pre-main-sequence stars is influenced by its magnetic interaction with its surrounding circumstellar disk. Using the PLUTO code, we perform 2.5D magnetohydrodynamic, axisymmetric, time-dependent simulations of star-disk interaction---with an initial dipolar magnetic field structure, and a viscous and resistive accretion disk---in order to model the three mechanisms that contribute to the net stellar torque: accretion flow, stellar wind, and magnetospheric ejections (periodic inflation and reconnection events). We investigate how changes in the stellar magnetic field strength, rotation rate, and mass accretion rate (changing the initial disk density) affect the net stellar torque. All simulations are in a net spin-up regime. We fit semi-analytic functions for the three stellar torque contributions, allowing for the prediction of the net stellar torque for our parameter regime, and the possibility of investigating spin-evolution using 1D stellar evolution codes. The presence of an accretion disk appears to increase the efficiency of stellar torques compared to isolated stars, for cases with outflow rates much smaller than accretion rates, because the star-disk interaction opens more of the stellar magnetic flux compared to that from isolated stars. In our parameter regime, a stellar wind with a mass loss rate of $\approx 1 \%$ of the mass accretion rate is capable of extracting $\lesssim 50 \%$ of the accreting angular momentum. These simulations suggest that achieving spin-equilibrium in a representative T Tauri case within our parameter regime, e.g., BP Tau, would require a wind mass loss rate of $\approx 25\%$ of the mass accretion rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源