论文标题

在野外学习以渐进的怀疑性高斯流程

Learning in the Wild with Incremental Skeptical Gaussian Processes

论文作者

Bontempelli, Andrea, Teso, Stefano, Giunchiglia, Fausto, Passerini, Andrea

论文摘要

从人类监督中学习的能力对于个人助理和AI的其他互动应用是基础。在野外部署互动学习者的两个核心挑战是监督的不可靠性和预测任务的不同复杂性。我们解决了一个简单但代表性的设置,野外的增量分类,在该设置中,监督是嘈杂的,并且类的数量随着时间的推移而增长。为了解决这项任务,我们建议重新设计围绕高斯流程(GPS)的持怀疑态度学习。持怀疑态度的学习是一种最近的互动策略,在这种策略中,如果机器充分自信示例被错误标记,则要求注释者重新考虑她的反馈。在许多情况下,这通常足以获得清洁监督。我们的重新设计,称为ISGP,利用GPS提供的不确定性估计来更好地分配标记和矛盾查询,尤其是在存在噪声的情况下。我们对合成和现实世界数据的实验表明,虽然持怀疑态度学习的原始表述产生了过度自信的模型,但在野外会完全失败,但ISGP在不同的噪声水平上效果很好,并且观察到新的类别。

The ability to learn from human supervision is fundamental for personal assistants and other interactive applications of AI. Two central challenges for deploying interactive learners in the wild are the unreliable nature of the supervision and the varying complexity of the prediction task. We address a simple but representative setting, incremental classification in the wild, where the supervision is noisy and the number of classes grows over time. In order to tackle this task, we propose a redesign of skeptical learning centered around Gaussian Processes (GPs). Skeptical learning is a recent interactive strategy in which, if the machine is sufficiently confident that an example is mislabeled, it asks the annotator to reconsider her feedback. In many cases, this is often enough to obtain clean supervision. Our redesign, dubbed ISGP, leverages the uncertainty estimates supplied by GPs to better allocate labeling and contradiction queries, especially in the presence of noise. Our experiments on synthetic and real-world data show that, as a result, while the original formulation of skeptical learning produces over-confident models that can fail completely in the wild, ISGP works well at varying levels of noise and as new classes are observed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源