论文标题
使用较少的状态使用强量量子非局部的套件的构建
The construction of sets with strong quantum nonlocality using fewer states
论文作者
论文摘要
在本文中,我们研究了多律量子系统中具有强非局部性的正交产品状态的构建。首先,我们专注于三方系统,并提出了一组正交产品状态,在$ d \ otimes d \ otimes d $ dastum系统中表现出强烈的非销售状态,其中包含$ 6 {{\ left(d-1 \ right)}^{2}}}} $ state。其次,我们发现以这种方式构建的集合数量可以进一步减少。然后使用$ 4 \ otimes 4 \ otimes 4 $和$ 5 \ otimes 5 \ otimes 5 $量子系统作为示例,可以看出,当d增加时,减少的量子状态将相当可观。第三,通过模仿三方系统的施工方法,提出了两个三方四方量子系统,$ 3 \ otimes 3 \ otimes 3 \ otimes 3 \ otimes 3 $ 3 $ and $ 4 \ otimes 4 \ otimes 4 \ otimes 4 \ otimes 4 $,其中两美元都比现有国家少。我们的研究对[Halder等人,PRL,122,122,040403(2019)]提出的一个开放性问题给出了积极的答案,表明确实存在较少的量子状态,而量子状态确实可以表现出强烈的量子非定位,而无需纠缠。
In this paper, we investigate the construction of orthogonal product states with strong nonlocality in multiparty quantum systems. Firstly, we focus on the tripartite system and propose a general set of orthogonal product states exhibiting strong nonlocality in $d\otimes d\otimes d$ quantum system, which contains $6{{\left( d-1 \right)}^{2}}$ states. Secondly, we find that the number of the sets constructed in this way could be further reduced. Then using $4\otimes 4\otimes 4$ and $5\otimes 5\otimes 5$ quantum systems as examples, it can be seen that when d increases, the reduced quantum state is considerable. Thirdly, by imitating the construction method of the tripartite system, two 3-divisible four-party quantum systems are proposed, $3\otimes 3\otimes 3\otimes 3$ and $4\otimes 4\otimes 4\otimes 4$, both of which contains fewer states than the existing ones. Our research gives a positive answer to an open question raised in [Halder, et al., PRL, 122, 040403 (2019)], indicating that there do exist fewer quantum states that can exhibit strong quantum nonlocality without entanglement.