论文标题
随机强迫对2D有限域中不可压缩切片模型的强溶液的影响
The influence of stochastic forcing on strong solutions to the Incompressible Slice Model in 2D bounded domain
论文作者
论文摘要
引入了Cotter-Holm Slice模型(CHSM),以研究是否以及特别是大气前沿的制定的行为,其预测在气象学中是基本的。本文考虑的是随机强迫对平滑2D有界域中不可压缩切片模型(ISM)的影响,可以通过在汉密尔顿的原理中适应CHSM的Lagrangian功能来得出CHSM对Euler-Boussinesq eady不可压缩情况的影响。首先,我们确定了局部路径解决方案(概率强解决方案)的存在和唯一性,以通过Banach空间中的非线性乘法随机强迫扰动$ W^{k,p}(d)$,$ k> 1+1+1/p $和$ p $ and $ p \ egq 2 $。该解决方案是通过使用随机紧凑型法和基于Yamada-Watanabe类型参数的$ W^{1,\ iffty} $引入合适的截止算子来获得的。然后,当ISM受到线性乘法随机强迫的扰动,并且潜在温度在$ y $方向上不会线性变化时,我们证明相关的cauchy问题承认具有高概率的独特全球全球途径,只要初始数据足够小或足够的扩散参数就足够大。结果部分回答了在Alonso-Or {Á} N等人中剩下的问题。 (Physica D 392:99--118,2019,第117页)。
The Cotter-Holm Slice Model (CHSM) was introduced to study the behavior of whether and specifically the formulation of atmospheric fronts, whose prediction is fundamental in meteorology. Considered herein is the influence of stochastic forcing on the Incompressible Slice Model (ISM) in a smooth 2D bounded domain, which can be derived by adapting the Lagrangian function in Hamilton's principle for CHSM to the Euler-Boussinesq Eady incompressible case. First, we establish the existence and uniqueness of local pathwise solution (probability strong solution) to the ISM perturbed by nonlinear multiplicative stochastic forcing in Banach spaces $W^{k,p}(D)$ with $k>1+1/p$ and $p\geq 2$. The solution is obtained by introducing suitable cut-off operators applied to the $W^{1,\infty}$-norm of the velocity and temperature fields, using the stochastic compactness method and the Yamada-Watanabe type argument based on the Gyöngy-Krylov characterization of convergence in probability. Then, when the ISM is perturbed by linear multiplicative stochastic forcing and the potential temperature does not vary linearly on the $y$-direction, we prove that the associated Cauchy problem admits a unique global-in-time pathwise solution with high probability, provided that the initial data is sufficiently small or the diffusion parameter is large enough. The results partially answer the problems left open in Alonso-Or{á}n et al. (Physica D 392:99--118, 2019, pp. 117).