论文标题
PL 4-manifolds的常规属和G度
On regular genus and G-degree of PL 4-manifolds with boundary
论文作者
论文摘要
在本文中,我们介绍了两个新的PL-Invarianiant:加权常规属和具有边界的歧管加权G-Degree。我们首先证明了两种不平等现象,涉及一些不变性,这些不平等表明,对于任何带有非球形边界组件的PL-manifold $ m $,$ m $的常规属$ \ natus $ \ natus $ \ natus $ \ natercal {g}(m)$至少是加权的常规$ \ tilde $ \ tilde {g}(g}(m)$ m $,至少是$ g $ $ g $ g $ $ $ $ $ $ $。 $ m $。另一种不等式指出,加权g-degrey $ \ tilde {d} _g(m)$ m $始终大于或等于$ m $的g-begree $ d_g(m)$。令$ m $为任何紧凑的连接pl $ 4 $ - manifold,$ h $的非球形边界组件数量。然后,我们计算以下内容:$ \ tilde {g}(m)\ geq2χ(m)+3m+2H-4+2 \ 2 \ hat {m} \ mbox {and} \ tilde {d} _g(d} _g(m) $ \ hat {m} $是$ m $的基本组和相应的奇异歧管$ \ wideHat {m} $的等级(通过分别从$ m $的边界组件中获得。作为 结果我们证明了常规属$ \ Mathcal {g}(m)$满足以下不平等: $$ \ MATHCAL {G}(M)\ GEQ2χ(M)+3M+3M+2H-4+2 \ HAT {M},$$ 它改善了$ m $的常规属$ \ mathcal {g}(m)$的已知下限。然后,我们定义两类的宝石,$ 4 $ - manifold $ m $带边界:一种由半简单的宝石组成,另一个由弱的半简单宝石组成,并证明,加权G度和加权的常规属的下限分别在这两个类别中获得。
In this article, we introduce two new PL-invariants: weighted regular genus and weighted G-degree for manifolds with boundary. We first prove two inequalities involving some PL-invariants which state that for any PL-manifold $M$ with non spherical boundary components, the regular genus $\mathcal{G}(M)$ of $M$ is at least the weighted regular genus $\tilde{G}(M)$ of $M$ which is again at least the generalized regular genus $\bar{G}(M)$ of $M$. Another inequality states that the weighted G-degree $\tilde{D}_G (M)$ of $M$ is always greater than or equal to the G-degree $D_G (M)$ of $M$. Let $M$ be any compact connected PL $4$-manifold with $h$ number of non spherical boundary components. Then we compute the following: $$\tilde{G} (M) \geq 2 χ(M)+3m+2h-4+2 \hat{m} \mbox{ and } \tilde{D}_G (M) \geq 12(2 χ(M)+3m+2h-4+2 \hat{m}),$$ where $m$ and $\hat{m}$ are the ranks of the fundamental groups of $M$ and the corresponding singular manifold $\widehat{M}$ (obtained by coning off the boundary components of $M$) respectively. As a consequence we prove that the regular genus $\mathcal{G}(M)$ satisfies the following inequality: $$\mathcal{G} (M) \geq 2 χ(M)+3m+2h-4+2 \hat{m},$$ which improves the previous known lower bounds for the regular genus $\mathcal{G}(M)$ of $M$. Then we define two classes of gems for PL $4$-manifold $M$ with boundary: one consists of semi-simple gems and the other consists of weak semi-simple gems, and prove that the lower bounds for the weighted G-degree and weighted regular genus are attained in these two classes respectively.