论文标题

为全局21厘米宇宙学建模银河前景和光束色彩

Modelling the Galactic Foreground and Beam Chromaticity for Global 21-cm Cosmology

论文作者

Hibbard, Joshua J., Tauscher, Keith, Rapetti, David, Burns, Jack O.

论文摘要

为了表征和建模全局21厘米信号实验的光束加权前景,我们提出了一种生成基础特征向量的方法,该方法将银河光谱指数和天空亮度温度与具有各种角度和光谱依赖的光束的模拟结合了分析和观察模型。每种组合都会产生独特的光束加权前景。通过使用单数值分解(SVD)生成特征向量以适合每个前景模型,我们研究了改变光束加权前景的组件的效果。我们发现,无论使用未加权的前景模型,与多项式模型相同,与多项式的前景模型无关,与多项式的模型相同,用于建模可观的各向同性束的特征向量几乎是相同的。然而,当各向异性,彩色光束重量在前景时,在前景的空间和光谱结构之间引入了耦合,从而使特征向量从多项式模型中扭曲了,并诱导基础对光束(色,图案,尖端)和(光谱)和(光谱index index,sumper opersigns apremits aprightess Map)的基础依赖性。我们发现,梁对特征向量的影响比前景模型更大。任何不解释其失真的模型都可以在$ \ sim 10 $ -10 $ 10^3 $ kelvin的订单上产生RMS不确定性,用于六参数,单光谱拟合。但是,如果使用SVD和训练集直接合并了梁,则最终的特征向量会产生毫克级的不确定性。鉴于对天空的足够详细的描述,我们的方法可以应用于任何特定的实验,并具有适当特征的光束,以产生准确的光束加权前景模型。

In order to characterize and model the beam-weighted foreground for global 21-cm signal experiments, we present a methodology for generating basis eigenvectors that combines analytical and observational models of both the galactic spectral index and sky brightness temperature with simulations of beams having various angular and spectral dependencies and pointings. Each combination creates a unique beam-weighted foreground. By generating eigenvectors to fit each foreground model using Singular Value Decomposition (SVD), we examine the effects of varying the components of the beam-weighted foreground. We find that the eigenvectors for modelling an achromatic, isotropic beam -- the ideal case -- are nearly identical regardless of the unweighted foreground model used, and are practicably indistinguishable from polynomial-based models. When anisotropic, chromatic beams weight the foreground, however, a coupling is introduced between the spatial and spectral structure of the foreground which distorts the eigenvectors away from the polynomial models and induces a dependence of the basis upon the exact features of the beam (chromaticity, pattern, pointing) and foreground (spectral index, sky brightness temperature map). We find that the beam has a greater impact upon the eigenvectors than foreground models. Any model which does not account for its distortion may produce RMS uncertainties on the order of $\sim 10$ - $10^3$ Kelvin for six-parameter, single spectrum fits. If the beam is incorporated directly using SVD and training sets, however, the resultant eigenvectors yield milli-Kelvin level uncertainties. Given a sufficiently detailed description of the sky, our methodology can be applied to any particular experiment with a suitably characterized beam for the purpose of generating accurate beam-weighted foreground models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源