论文标题

改进了广义Kummer Construction $ g_2 $结构的估计

Improved Estimates for $G_2$-structures on the Generalised Kummer Construction

论文作者

Platt, Daniel

论文摘要

$ g_2 $ -orbifold $ t^7/γ$的分辨率,其中$γ$是一个适当选择的有限群体,承认$ 1 $ - 参数$ g_2 $结构,带有小质量$φ^t $,是通过在eguchi-hanson Space中获得的。乔伊斯(Joyce)表明,对于$ t $的小值,$φ^t $可能会扰动$ g_2 $ - 结构$ \tildeφ^t $。使用适合歧管几何形状的规范,我们给出了$ \tildeφ^t $存在的替代证明。此替代证明会产生估计$ \ left | \ left | \tildeφ^t-φ^t \ right | \ right | _ {c^0} \ leq ct^{5/2} $。这是对先前已知的估计$ \ left | \ left |的改进。 \tildeφ^t-φ^t \ right | \ right | _ {c^0} \ leq ct^{1/2} $。作为证据的一部分,我们表明,Eguchi-Hanson Space以衰减的形式承认了一种独特的(缩放)谐波形式,这是独立兴趣的结果。

The resolution of the $G_2$-orbifold $T^7/Γ$, where $Γ$ is a suitably chosen finite group, admits a $1$-parameter family of $G_2$-structures with small torsion $φ^t$, obtained by gluing in Eguchi-Hanson spaces. It was shown by Joyce that $φ^t$ can be perturbed to torsion-free $G_2$-structures $\tildeφ^t$ for small values of $t$. Using norms adapted to the geometry of the manifold we give an alternative proof of the existence of $\tildeφ^t$. This alternative proof produces the estimate $\left|\left| \tildeφ^t-φ^t \right|\right|_{C^0} \leq ct^{5/2}$. This is an improvement over the previously known estimate $\left|\left| \tildeφ^t-φ^t \right|\right|_{C^0} \leq ct^{1/2}$. As part of the proof, we show that Eguchi-Hanson space admits a unique (up to scaling) harmonic form with decay, which is a result of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源