论文标题

通过用户互动改善网络欺凌检测

Improving Cyberbully Detection with User Interaction

论文作者

Ge, Suyu, Cheng, Lu, Liu, Huan

论文摘要

在过去的几十年中,网络欺凌行为被确定为预期和重复的在线欺凌行为,越来越普遍。尽管到目前为止取得了重大进展,但大多数现有工作在网络欺凌检测上的重点在于社交媒体会议中不同评论的独立内容分析。我们认为,这种主要的分析概念受到三个关键局限性:它们忽略了不同评论之间的时间相关性;他们仅考虑一个评论中的内容,而不是在评论中的主题连贯性。它们仍然是通用的,并且社交媒体用户之间的相互作用有限。在这项工作中,我们观察到同一会话中的用户评论可能固有地相关,例如讨论类似的主题,并且它们的互动可能会随着时间的推移而发展。我们还表明,建模这种主题相干性和时间相互作用对于捕获欺凌行为的重复特征至关重要,从而可以更好地预测性能。为了实现目标,我们首先为每个社交媒体会议构建一个统一的时间图。利用图形神经网络的最新进展,我们提出了一种基于图形的原则性方法,用于建模整个用户交互的时间动态和主题连贯性。我们通过会议级欺凌检测和评论级案例研究的任务从经验上评估方法的有效性。我们的代码已发布给公开。

Cyberbullying, identified as intended and repeated online bullying behavior, has become increasingly prevalent in the past few decades. Despite the significant progress made thus far, the focus of most existing work on cyberbullying detection lies in the independent content analysis of different comments within a social media session. We argue that such leading notions of analysis suffer from three key limitations: they overlook the temporal correlations among different comments; they only consider the content within a single comment rather than the topic coherence across comments; they remain generic and exploit limited interactions between social media users. In this work, we observe that user comments in the same session may be inherently related, e.g., discussing similar topics, and their interaction may evolve over time. We also show that modeling such topic coherence and temporal interaction are critical to capture the repetitive characteristics of bullying behavior, thus leading to better predicting performance. To achieve the goal, we first construct a unified temporal graph for each social media session. Drawing on recent advances in graph neural network, we then propose a principled graph-based approach for modeling the temporal dynamics and topic coherence throughout user interactions. We empirically evaluate the effectiveness of our approach with the tasks of session-level bullying detection and comment-level case study. Our code is released to public.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源