论文标题
基于元学习的跨域验证
Discriminative Adversarial Domain Generalization with Meta-learning based Cross-domain Validation
论文作者
论文摘要
机器学习模型的概括能力是指通过从一个或多个可见域的学习来概括“看不见”领域的知识,对于在现实世界中开发和部署机器学习应用程序至关重要。域的概括(DG)技术旨在增强机器学习模型的这种概括能力,在这种模型中,学到的特征表示和分类器是改善概括并做出决策的两个关键因素。在本文中,我们提出了基于元学习的跨域验证的歧视性对抗域概括(DADG)。我们提出的框架包含两个主要组成部分,这些组件可以协同构建域,将其域名的DNN模型:(i)歧视性对抗性学习,它们主动地学习了对多个“可见”域上的广义特征表示,并且(II)基于元学习的交叉验证,通过培训/测试型号进行了训练METAS Ancique in MetAseiquiqueNning技术,该技术模拟了型号的进程。在实验评估中,在我们提出的方法和三个基准数据集上的其他现有方法中进行了全面比较。结果表明,在大多数评估案例中,DADG始终胜过强大的基线深度,并且优于其他现有的DG算法。
The generalization capability of machine learning models, which refers to generalizing the knowledge for an "unseen" domain via learning from one or multiple seen domain(s), is of great importance to develop and deploy machine learning applications in the real-world conditions. Domain Generalization (DG) techniques aim to enhance such generalization capability of machine learning models, where the learnt feature representation and the classifier are two crucial factors to improve generalization and make decisions. In this paper, we propose Discriminative Adversarial Domain Generalization (DADG) with meta-learning-based cross-domain validation. Our proposed framework contains two main components that work synergistically to build a domain-generalized DNN model: (i) discriminative adversarial learning, which proactively learns a generalized feature representation on multiple "seen" domains, and (ii) meta-learning based cross-domain validation, which simulates train/test domain shift via applying meta-learning techniques in the training process. In the experimental evaluation, a comprehensive comparison has been made among our proposed approach and other existing approaches on three benchmark datasets. The results shown that DADG consistently outperforms a strong baseline DeepAll, and outperforms the other existing DG algorithms in most of the evaluation cases.