论文标题
beelines:自动驾驶安全性和舒适性的运动预测指标
Beelines: Motion Prediction Metrics for Self-Driving Safety and Comfort
论文作者
论文摘要
用于运动预测的常用指标与自动驾驶车辆的系统级别的性能不太相关。最常见的指标是平均位移误差(ADE)和最终位移误差(FDE),这省略了许多功能,使其自动驾驶性能指标差。由于高保真模拟和轨道测试可能是资源密集的,因此预测指标的使用更好地与全系统行为相关联,可以实现SWIFTER迭代周期。在本文中,我们为预测评估提供了一个高度特定于自动驾驶的概念框架。我们提出了两个互补指标,以量化运动预测对安全性(与召回有关)和舒适性(与精度有关)的影响。使用模拟器,我们证明我们的安全度量的信噪比明显优于识别不安全事件的位移误差。
The commonly used metrics for motion prediction do not correlate well with a self-driving vehicle's system-level performance. The most common metrics are average displacement error (ADE) and final displacement error (FDE), which omit many features, making them poor self-driving performance indicators. Since high-fidelity simulations and track testing can be resource-intensive, the use of prediction metrics better correlated with full-system behavior allows for swifter iteration cycles. In this paper, we offer a conceptual framework for prediction evaluation highly specific to self-driving. We propose two complementary metrics that quantify the effects of motion prediction on safety (related to recall) and comfort (related to precision). Using a simulator, we demonstrate that our safety metric has a significantly better signal-to-noise ratio than displacement error in identifying unsafe events.