论文标题

关于在多级回归和流道中使用辅助变量

On the Use of Auxiliary Variables in Multilevel Regression and Poststratification

论文作者

Si, Yajuan

论文摘要

多级回归和延伸后(MRP)是解决亚组估计中选择偏见的流行方法,从社会科学到公共卫生的领域,广泛的应用。在本文中,我们研究了有限种群中MRP的推论有效性,探讨了阶段和模型规范的影响。 MRP的成功在很大程度上取决于与结果密切相关的辅助信息的可用性。为了增强结果模型的拟合性能,我们建议对辅助变量有条件地对包含概率进行建模,并将估计包含概率的灵活功能作为平均结构中的预测指标。我们提出了一个统计数据集成框架,该框架为概率和非概率调查提供了可靠的推论,从而解决了实际应用中的各种挑战。我们的仿真研究表明,与替代方法相比,MRP的统计有效性涉及偏置和方差之间的权衡,对具有较小样本量的亚组估计值有更大的好处。我们已经将方法应用于青少年的大脑认知发展(ABCD)研究,该研究收集了有关美国21个地理位置的儿童的信息,以提供国家代表,但会遭受选择偏见作为非概率样本。我们专注于在ABCD研究中对不同儿童组的认知度量,并表明辅助变量的使用会影响认知表现的发现。

Multilevel regression and poststratification (MRP) is a popular method for addressing selection bias in subgroup estimation, with broad applications across fields from social sciences to public health. In this paper, we examine the inferential validity of MRP in finite populations, exploring the impact of poststratification and model specification. The success of MRP relies heavily on the availability of auxiliary information that is strongly related to the outcome. To enhance the fitting performance of the outcome model, we recommend modeling the inclusion probabilities conditionally on auxiliary variables and incorporating flexible functions of estimated inclusion probabilities as predictors in the mean structure. We present a statistical data integration framework that offers robust inferences for probability and nonprobability surveys, addressing various challenges in practical applications. Our simulation studies indicate the statistical validity of MRP, which involves a tradeoff between bias and variance, with greater benefits for subgroup estimates with small sample sizes, compared to alternative methods. We have applied our methods to the Adolescent Brain Cognitive Development (ABCD) Study, which collected information on children across 21 geographic locations in the U.S. to provide national representation, but is subject to selection bias as a nonprobability sample. We focus on the cognition measure of diverse groups of children in the ABCD study and show that the use of auxiliary variables affects the findings on cognitive performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源