论文标题

混合:马尔可夫统计的一般框架

Mixing it up: A general framework for Markovian statistics

论文作者

Dexheimer, Niklas, Strauch, Claudia, Trottner, Lukas

论文摘要

到目前为止,多维连续时间马尔可夫过程的非参数分析一直集中在特定的模型选择上,这主要与半群的对称性有关。尽管这种方法允许在最小值意义上研究估计量的性能,但它限制了结果的适用性到一组相当有限的随机过程集中,特别是几乎不允许合并跳跃结构。结果,对于许多应用和理论上的兴趣模型,除了文献中可用的美丽但有限的框架之外,无法就典型统计程序的稳健性做出任何陈述。要缩小这一差距,我们确定了$β$ - 在过渡密度上的混合和加热内核的界限,作为合适的组合,以获得$ \ sup $ -norm和$ l^2 $内核不变密度估计速率与可逆的多中性扩散过程相匹配的情况,并基于Interpormenting Inivition I.I.D。或弱依赖数据。此外,我们演示了如何在我们的一般框架内基于紧密的统一力矩界限和与Markov流程添加功能相关的经验过程的偏差不平等,在我们的一般框架内如何实现最高$ \ log $ $ terms,最佳$ \ sup $ -norm自适应不变密度估计。从连续时间马尔可夫流程和PDE技术的稳定性理论的经典工具可以验证基本假设,该工具为评估大量马尔可夫模型的统计性能打开了大门。我们通过展示了如何将具有Lévy驱动的跳跃部分的多维跳跃SDE在不同系数假设下进行无缝集成到我们的框架中,从而建立了此类过程的新型自适应$ \ sup $ norm估计率,从而强调了这一点。

Up to now, the nonparametric analysis of multidimensional continuous-time Markov processes has focussed strongly on specific model choices, mostly related to symmetry of the semigroup. While this approach allows to study the performance of estimators for the characteristics of the process in the minimax sense, it restricts the applicability of results to a rather constrained set of stochastic processes and in particular hardly allows incorporating jump structures. As a consequence, for many models of applied and theoretical interest, no statement can be made about the robustness of typical statistical procedures beyond the beautiful, but limited framework available in the literature. To close this gap, we identify $β$-mixing of the process and heat kernel bounds on the transition density as a suitable combination to obtain $\sup$-norm and $L^2$ kernel invariant density estimation rates matching the case of reversible multidimenisonal diffusion processes and outperforming density estimation based on discrete i.i.d. or weakly dependent data. Moreover, we demonstrate how up to $\log$-terms, optimal $\sup$-norm adaptive invariant density estimation can be achieved within our general framework based on tight uniform moment bounds and deviation inequalities for empirical processes associated to additive functionals of Markov processes. The underlying assumptions are verifiable with classical tools from stability theory of continuous time Markov processes and PDE techniques, which opens the door to evaluate statistical performance for a vast amount of Markov models. We highlight this point by showing how multidimensional jump SDEs with Lévy driven jump part under different coefficient assumptions can be seamlessly integrated into our framework, thus establishing novel adaptive $\sup$-norm estimation rates for this class of processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源