论文标题

2D磁性磁磁场算子和强壮的不平等现象的临界磁场

Critical magnetic field for 2d magnetic Dirac-Coulomb operators and Hardy inequalities

论文作者

Dolbeault, Jean, Esteban, Maria J., Loss, Michael

论文摘要

本文致力于在存在Aharonov-Bohm外部磁潜力的情况下研究二维Dirac-Coulomb操作员。我们表征了二维磁性硬度不平等的磁场强度最高强度。在这个临界磁场之前,操作员承认了一个具有区别的自动化扩展,并且存在一个基态能量的概念,该概念定义为连续光谱间隙中最低的特征值。

This paper is devoted to the study of the two-dimensional Dirac-Coulomb operator in presence of an Aharonov-Bohm external magnetic potential. We characterize the highest intensity of the magnetic field for which a two-dimensional magnetic Hardy inequality holds. Up to this critical magnetic field, the operator admits a distinguished self-adjoint extension and there is a notion of ground state energy, defined as the lowest eigenvalue in the gap of the continuous spectrum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源