论文标题
偏心轨道上行星周围的三维流场
The Three Dimensional Flow Field Around Planets on Eccentric Orbits
论文作者
论文摘要
我们研究了围绕偏心蛋白酶的流体动力流的特性,并将其与通常假定的圆形轨道相提并论。为此,我们对具有少量偏心的原始星et进行了一组3D流体动力模拟($ e \ leq 0.1 $)。我们采用状态和浓缩分辨率的等温方程,以调查流向原行星磁盘(CPD)的尺度。我们发现,在接受亚音速偏心运动的低行星质量的CPD外部旋转增强。如果使偏心率足够大以产生弓形冲击,则这种趋势会逆转,并且旋转变得越来越逆行。与圆形轨道相比,瞬时偏心流场发生了巨大变化。尽管后者表现出极性流入和中平面流出的通用模式,但流程几何形状取决于偏心案例中的轨道相。对于此处测试的适度偏心率,流入的主要来源也可以来自平面而不是杆子。我们发现,对于较高的$ e $和较低的原始球星质量的流入和流出量增加,从而通过地球的邦迪半径回收了更多的气体。这些增加的通量可能会使偏心行星的卵石积聚率高达圆形轨道速率的几倍。响应于偏心运动,行星结合的CPD的结构和旋转保持不变。由于CPD调节气体最终积聚到行星上,因此我们预测偏心行星和圆形行星之间的气体积聚率的变化很小。
We investigate the properties of the hydrodynamic flow around eccentric protoplanets and compare them with the often assumed case of a circular orbit. To this end, we perform a set of 3D hydrodynamic simulations of protoplanets with small eccentricities ($e\leq 0.1$). We adopt an isothermal equation of state and concentrate resolution on the protoplanet to investigate flows down to the scale of the protoplanet's circumplanetary disk (CPD). We find enhanced prograde rotation exterior to the CPD for low planet masses undergoing subsonic eccentric motion. If the eccentricity is made large enough to develop a bow shock, this trend reverses and rotation becomes increasingly retrograde. The instantaneous eccentric flow field is dramatically altered compared to circular orbits. Whereas the latter exhibit a generic pattern of polar inflow and midplane outflow, the flow geometry depends on orbital phase in the eccentric case. For even the modest eccentricities tested here, the dominant source of inflow can come from the midplane instead of the poles. We find that the amount of inflow and outflow increases for higher $e$ and lower protoplanet masses, thereby recycling more gas through the planet's Bondi radius. These increased fluxes may increase the pebble accretion rate for eccentric planets up to several times that of the circular orbit rate. In response to eccentric motion, the structure and rotation of the planet's bound CPD remains unchanged. Because the CPD regulates the eventual accretion of gas onto the planet, we predict little change to the gas accretion rates between eccentric and circular planets.