论文标题

对社区对使用图神经网络半监督分类的影响

On the Impact of Communities on Semi-supervised Classification Using Graph Neural Networks

论文作者

Hussain, Hussain, Duricic, Tomislav, Lex, Elisabeth, Kern, Roman, Helic, Denis

论文摘要

图神经网络(GNN)在许多应用中都是有效的。尽管如此,人们对共同图形结构对GNN学习过程的影响有限。在这项工作中,我们系统地研究了社区结构对GNN在半监督节点分类中的性能的影响。在对六个数据集进行消融研究之后,我们测量了原始图表上GNN的性能,以及在存在和缺乏社区结构的情况下的性能变化。我们的结果表明,社区通常会对学习过程和分类表现产生重大影响。例如,如果一个社区的大多数节点共享一个单一的分类标签,则分解社区结构会导致大幅下降。另一方面,对于标签显示与社区相关性较低的情况,我们发现图形结构与学习过程相当无关,并且仅功能基线很难击败。通过我们的工作,我们提供了有关GNN的能力和局限性的更深入的见解,包括基于图形结构的一组通用指南。

Graph Neural Networks (GNNs) are effective in many applications. Still, there is a limited understanding of the effect of common graph structures on the learning process of GNNs. In this work, we systematically study the impact of community structure on the performance of GNNs in semi-supervised node classification on graphs. Following an ablation study on six datasets, we measure the performance of GNNs on the original graphs, and the change in performance in the presence and the absence of community structure. Our results suggest that communities typically have a major impact on the learning process and classification performance. For example, in cases where the majority of nodes from one community share a single classification label, breaking up community structure results in a significant performance drop. On the other hand, for cases where labels show low correlation with communities, we find that the graph structure is rather irrelevant to the learning process, and a feature-only baseline becomes hard to beat. With our work, we provide deeper insights in the abilities and limitations of GNNs, including a set of general guidelines for model selection based on the graph structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源