论文标题
两个故事的模型:改进长尾项目的双重转移学习框架建议
A Model of Two Tales: Dual Transfer Learning Framework for Improved Long-tail Item Recommendation
论文作者
论文摘要
在推荐系统中,高尾长的项目分布非常普遍。它极大地损害了尾部物品的模型性能。为了改善尾部的建议,我们进行研究以将知识从头部物品转移到尾部项目,利用头部物品中丰富的用户反馈以及头部和尾部项目之间的语义连接。具体而言,我们提出了一个新颖的双传输学习框架,该框架共同学习了从模型级别和项目级别的知识转移:1。模型级知识传递构建了从几乎没有射击到许多拍摄模型的模型参数的通用元映射。它捕获了模型级别上的隐式数据增强,以改善尾部项目的表示。 2。项目级传输通过项目级特征连接头部和尾部项目,以确保将元映射从头部物品到尾部物品的平稳转移。合并了两种类型的转移,以确保可以在长尾分发设置中充分应用从头部项目中学习的知识。通过在两个基准数据集上进行的大量实验,结果表明,我们提出的双重传输学习框架大大优于其他最先进的方法,用于尾部项目,以HIT率和NDCG提出。同样令人鼓舞的是,我们的框架进一步改善了头部物品和尾部物品增益的总体性能。
Highly skewed long-tail item distribution is very common in recommendation systems. It significantly hurts model performance on tail items. To improve tail-item recommendation, we conduct research to transfer knowledge from head items to tail items, leveraging the rich user feedback in head items and the semantic connections between head and tail items. Specifically, we propose a novel dual transfer learning framework that jointly learns the knowledge transfer from both model-level and item-level: 1. The model-level knowledge transfer builds a generic meta-mapping of model parameters from few-shot to many-shot model. It captures the implicit data augmentation on the model-level to improve the representation learning of tail items. 2. The item-level transfer connects head and tail items through item-level features, to ensure a smooth transfer of meta-mapping from head items to tail items. The two types of transfers are incorporated to ensure the learned knowledge from head items can be well applied for tail item representation learning in the long-tail distribution settings. Through extensive experiments on two benchmark datasets, results show that our proposed dual transfer learning framework significantly outperforms other state-of-the-art methods for tail item recommendation in hit ratio and NDCG. It is also very encouraging that our framework further improves head items and overall performance on top of the gains on tail items.