论文标题
二阶线性椭圆方程和Hodge-DIRAC操作员
Second Order Linear Elliptic Equations and Hodge-Dirac Operators
论文作者
论文摘要
在本文中,我们展示了如何以可测量系数和Dirichlet边界条件在发散形式上均匀的椭圆形方程,可以将其转换为具有半二迪里奇特边界条件的一阶椭圆系统。该一阶系统涉及Hodge-DIRAC运算符,可以看作是平面中Beltrami方程的自然概括,我们为该方程开发了一个理论,从平面扩展到更高的维度。对一阶系统的减少既适用于线性,又适用于准线性二阶方程,我们认为这具有独立的利益。使用一阶系统,我们在简单且有限连接的域上给出了Dirichlet问题解决方案的新表示公式。该表示公式仅涉及卷积类型和neumann系列的单数积分运算符,其中适用经典的Calderón-Zygmund理论。此外,除了恒定系数运算符的基本解决方案外,没有任何基本解决方案或Green的功能不使用。值得注意的是,此表示公式也适用于完全非线性一阶系统的解决方案。我们希望表示公式可以用于数值求解方程。使用这些工具,我们提供了新的简短证明Meyers的更高集成性定理。此外,我们表明,一阶系统的解决方案是Hölder连续的,其Hölder系数与二阶方程的解决方案相同。最后,证明了较高维度beurling-ahlfors操作员的分解身份和表示公式。
In this paper we show how a second order scalar uniformly elliptic equation on divergence form with measurable coefficients and Dirichlet boundary conditions can be transformed into a first order elliptic system with half-Dirichlet boundary condition. This first order system involves Hodge-Dirac operators and can be seen as a natural generalization of the Beltrami equation in the plane and we develop a theory for this equation, extending results from the plane to higher dimension. The reduction to a first order system applies both to linear as well as quasilinear second order equations and we believe this to be of independent interest. Using the first order system, we give a new representation formula of the solution of the Dirichlet problem both on simply and finitely connected domains. This representation formula involves only singular integral operators of convolution type and Neumann series there of, for which classical Calderón-Zygmund theory is applicable. Moreover, no use is made of any fundamental solution or Green's function beside fundamental solutions of constant coefficient operators. Remarkably, this representation formula applies also for solutions of the fully non-linear first order system. We hope that the representation formula could be used for numerically solving the equations. Using these tools we give a new short proof of Meyers' higher integrability theorem. Furthermore, we show that the solutions of the first order system are Hölder continuous with the same Hölder coefficient as the solutions of the second order equations. Finally, factorization identities and representation formulas for the higher dimensional Beurling-Ahlfors operator are proven.