论文标题
降温氧化纤维素纤维的分解:纳米纤维和单一链的隔离中的互相和链相互作用
Disassembling of TEMPO-oxidized cellulose fibers: intersheet and interchain interactions in the isolation of nanofibers and unitary chains
论文作者
论文摘要
纤维素拆卸是使用基于纤维素的材料设计纳米结构的重要问题。在这项工作中,我们提出了实验和理论研究的关节,以解决纤维素纳米纤维的拆卸。通过2,2,6,6-四甲基哌啶-1-氧基(TEMPO)介导的氧化过程,结合原子力显微镜结果,我们发现形成了与单个纤维素聚合物链的直径相对应的纳米纤维。这些聚合物链的形成是由氧化链之间排斥性静电相互作用所统治的。为了提供一个原子观念,已经进行了进一步的第一原理计算,以理解纤维素拆卸过程,重点关注链链的平衡和氧化时互相互作用。首先,我们在原始系统中分析了这些相互作用,在该系统中,我们发现互相互作用比链链更强。在氧化系统中,我们考虑了沿基本原纤维内部部位的(带电)羧酸酯基团的形成。我们在羧基基团上显示净电荷浓度,支持纤维素纳米纤维之间排斥性静电相互作用的出现。实际上,我们的总能量结果表明,原纤维之间的结合强度削弱与羧酸盐基团的浓度和净电荷密度成正比。此外,通过比较链链和室外结合能,我们发现大多数拆卸过程应通过打破链链O--H $ \ cdots $ o氢键相互作用,从而实现单一和双纤维素聚合物链的实验观察。
Cellulose disassembly is an important issue in designing nanostructures using cellulose-based materials. In this work, we present a joint of experimental and theoretical study addressing the disassembly of cellulose nanofibrils. Through 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) mediated oxidation processes, combined with atomic force microscopy results, we find the formation of nanofibers with diameters corresponding to a single cellulose polymer chain. The formation of these polymer chains is ruled by repulsive electrostatic interactions between the oxidized chains. Further first-principles calculations have been done in order to provide an atomistic understanding the cellulose disassembling processes, focusing on the balance of the interchain and intersheet interactions upon oxidation. Firstly we analyse these interaction in pristine systems, where we found the intersheet interaction stronger than the interchain one. In the oxidized systems, we have considered the formation of (charged) carboxylate groups along the inner sites of elementary fibrils. We show a net charge concentration on the carboxylate groups, supporting the emergence of repulsive electrostatic interactions between the cellulose nanofibers. Indeed, our total energy results show that the weakening of the binding strength between the fibrils is proportional to the concentration and the net charge density of the carboxylate group. Moreover, by comparing interchain and intersheet binding energies, we found that most of the disassembly processes should take place by breaking the interchain O--H$\cdots$O hydrogen bond interactions, and thus supporting the experimental observation of single and double cellulose polymeric chains.