论文标题

双曲线理性地图的乘数统计数据

Statistics of multipliers for hyperbolic rational maps

论文作者

Sharp, Richard, Stylianou, Anastasios

论文摘要

在本文中,我们考虑了Riemann Sphere上双曲合理图的轨道的计数问题,其中约束在轨道的乘数上放置。使用Dolgopyat的工作中的参数,我们考虑不同的和潜在的缩小间隔,并获得类似于乘数对数的局部中央限制定理的结果,该定理是乘数的绝对值和对载体的等分定理的结果。

In this article, we consider a counting problem for orbits of hyperbolic rational maps on the Riemann sphere, where constraints are placed on the multipliers of orbits. Using arguments from work of Dolgopyat, we consider varying and potentially shrinking intervals, and obtain a result which resembles a local central limit theorem for the logarithm of the absolute value of the multiplier and an equidistribution theorem for the holonomies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源