论文标题

基于自学习阈值的负载平衡

Self-Learning Threshold-Based Load Balancing

论文作者

Goldsztajn, Diego, Borst, Sem C., van Leeuwaarden, Johan S. H., Mukherjee, Debankur, Whiting, Philip A.

论文摘要

我们考虑了一个大规模的服务系统,必须将传入的任务即时派遣到许多并行服务器池中的一个。用用户感知的性能随着并发任务的数量而降低,调度员旨在通过通过简单的阈值策略平衡负载来最大化整体服务质量。我们证明,这种政策对流体和扩散量表是最佳的,而仅涉及一个小型沟通开销,这对于大规模部署至关重要。为了最佳设置阈值,重要的是要学习系统的负载,这可能是未知的。为此,我们设计了以在线方式调整阈值的控制规则。我们得出条件,这些条件可以保证这种自适应阈值以最佳值和时间的估计为止,直到发生这种情况。此外,我们提供了支持理论结果的数值实验,并进一步表明我们的政策有效地应对时间变化的需求模式。

We consider a large-scale service system where incoming tasks have to be instantaneously dispatched to one out of many parallel server pools. The user-perceived performance degrades with the number of concurrent tasks and the dispatcher aims at maximizing the overall quality-of-service by balancing the load through a simple threshold policy. We demonstrate that such a policy is optimal on the fluid and diffusion scales, while only involving a small communication overhead, which is crucial for large-scale deployments. In order to set the threshold optimally, it is important, however, to learn the load of the system, which may be unknown. For that purpose, we design a control rule for tuning the threshold in an online manner. We derive conditions which guarantee that this adaptive threshold settles at the optimal value, along with estimates for the time until this happens. In addition, we provide numerical experiments which support the theoretical results and further indicate that our policy copes effectively with time-varying demand patterns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源