论文标题
通过多光子干扰在单光子流中通过多光子干扰的人工相干状态
Artificial coherent states of light by multi-photon interference in a single-photon stream
论文作者
论文摘要
连贯的光学状态由不同光子数(FOCK)状态的量子叠加组成,但由于它们不形成正交基础,因此无法通过线性光学元件从中获得光子数态。在这里,我们通过在光学sagnac环中使用量子干扰来操纵随机连续的单光子流来证明相反的情况,我们创建了具有可调光子统计量的光量子状态,包括近似弱的相干状态。我们使用光学微腔内的半导体量子点产生的真实单光子流进行实验证明,并证明我们可以通过与我们的理论一致的$ g^{(2)}(2)}(2)}(0)\ rightArow1 $获得光,只能通过至少3个光子的量子干扰来解释这一点。但是,产生的人造光状态比连贯的状态复杂得多,其中包含光子的量子纠缠,使其成为多光子纠缠的资源。
Coherent optical states consist of a quantum superposition of different photon number (Fock) states, but because they do not form an orthogonal basis, no photon number states can be obtained from it by linear optics. Here we demonstrate the reverse, by manipulating a random continuous single-photon stream using quantum interference in an optical Sagnac loop, we create engineered quantum states of light with tunable photon statistics, including approximate weak coherent states. We demonstrate this experimentally using a true single-photon stream produced by a semiconductor quantum dot in an optical microcavity, and show that we can obtain light with $g^{(2)}(0)\rightarrow1$ in agreement with our theory, which can only be explained by quantum interference of at least 3 photons. The produced artificial light states are, however, much more complex than coherent states, containing quantum entanglement of photons, making them a resource for multi-photon entanglement.