论文标题

负担能力的移交与人类手臂移动性约束

Affordance-Aware Handovers with Human Arm Mobility Constraints

论文作者

Ardón, Paola, Cabrera, Maria E., Pairet, Èric, Petrick, Ronald P. A., Ramamoorthy, Subramanian, Lohan, Katrin S., Cakmak, Maya

论文摘要

关于对象切换配置的推理允许辅助代理估算具有不同ARM移动能力的接收器的移交适用性。尽管有用于估计移交有效性的现有方法,但它们的发现仅限于没有ARM移动性障碍和特定对象的用户。因此,当前的最新方法无法将新颖的物体移交给具有不同手臂移动能力的接收器。我们提出了一种将移交行为概括为以前看不见的对象的方法,但受用户ARM移动级别和任务上下文的约束。我们提出了一个具有层次层次优化的成本的较低的层次优化成本,该成本可适应较低的ARM移动性的接收器对象配置。这也确保机器人掌握了用户即将完成的任务的上下文,即对象的使用情况。为了了解与移交配置相比的偏好,我们报告了一项在线研究的发现,其中我们向具有不同级别的ARM移动性的259美元用户提出了不同的移交方法。我们发现人们对移交方法的偏好与他们的手臂移动能力相关。我们将这些偏好封装在统计关系模型(SRL)中,这些模型能够考虑到接收器的ARM移动性和即将完成的任务,可以推理最合适的切换配置。使用我们的SRL模型,当将新颖对象的概括交换为新物体时,我们获得了$ 90.8 \%$的平均切换精度。

Reasoning about object handover configurations allows an assistive agent to estimate the appropriateness of handover for a receiver with different arm mobility capacities. While there are existing approaches for estimating the effectiveness of handovers, their findings are limited to users without arm mobility impairments and to specific objects. Therefore, current state-of-the-art approaches are unable to hand over novel objects to receivers with different arm mobility capacities. We propose a method that generalises handover behaviours to previously unseen objects, subject to the constraint of a user's arm mobility levels and the task context. We propose a heuristic-guided hierarchically optimised cost whose optimisation adapts object configurations for receivers with low arm mobility. This also ensures that the robot grasps consider the context of the user's upcoming task, i.e., the usage of the object. To understand preferences over handover configurations, we report on the findings of an online study, wherein we presented different handover methods, including ours, to $259$ users with different levels of arm mobility. We find that people's preferences over handover methods are correlated to their arm mobility capacities. We encapsulate these preferences in a statistical relational model (SRL) that is able to reason about the most suitable handover configuration given a receiver's arm mobility and upcoming task. Using our SRL model, we obtained an average handover accuracy of $90.8\%$ when generalising handovers to novel objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源