论文标题

PROCAN:进行性生长的渠道专注于肺结节分类的非本地网络

ProCAN: Progressive Growing Channel Attentive Non-Local Network for Lung Nodule Classification

论文作者

Al-Shabi, Mundher, Shak, Kelvin, Tan, Maxine

论文摘要

筛查计算机断层扫描(CT)扫描中的肺癌分类是早期发现该疾病的最关键任务之一。如果我们能够准确地对恶性/癌性肺结节进行分类,那么许多生命就可以挽救。因此,最近提出了几种基于深度学习的模型,以将肺结节归类为恶性或良性。然而,大小和异质外观的巨大变化使该任务变得极具挑战性。我们提出了一个新的渐进式生长渠道专注于肺结节分类的非本地(PROCAN)网络。提出的方法从三个不同方面解决了这一挑战。首先,我们通过向其添加渠道的注意力能力来丰富非本地网络。其次,我们采用课程学习原则,首先在艰苦的示例之前训练模型。第三,随着课程学习期间的分类任务变得越来越困难,我们的模型正在逐步发展,以提高其处理手头任务的能力。我们在两个不同的公共数据集上检查了我们提出的方法,并将其性能与文献中的最新方法进行了比较。结果表明,Procan模型的表现优于最先进的方法,而在LIDC-IDRI数据集上,AUC的AUC为98.05%,精度为95.28%。此外,我们进行了广泛的消融研究,以分析我们提出的方法的每个新组成部分的贡献和影响。

Lung cancer classification in screening computed tomography (CT) scans is one of the most crucial tasks for early detection of this disease. Many lives can be saved if we are able to accurately classify malignant/cancerous lung nodules. Consequently, several deep learning based models have been proposed recently to classify lung nodules as malignant or benign. Nevertheless, the large variation in the size and heterogeneous appearance of the nodules makes this task an extremely challenging one. We propose a new Progressive Growing Channel Attentive Non-Local (ProCAN) network for lung nodule classification. The proposed method addresses this challenge from three different aspects. First, we enrich the Non-Local network by adding channel-wise attention capability to it. Second, we apply Curriculum Learning principles, whereby we first train our model on easy examples before hard ones. Third, as the classification task gets harder during the Curriculum learning, our model is progressively grown to increase its capability of handling the task at hand. We examined our proposed method on two different public datasets and compared its performance with state-of-the-art methods in the literature. The results show that the ProCAN model outperforms state-of-the-art methods and achieves an AUC of 98.05% and an accuracy of 95.28% on the LIDC-IDRI dataset. Moreover, we conducted extensive ablation studies to analyze the contribution and effects of each new component of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源