论文标题
非肌电心电图的心室激活特性的推断
Inference of ventricular activation properties from non-invasive electrocardiography
论文作者
论文摘要
精确心脏病学的实现需要新颖的技术来实现单个患者心脏功能的非侵入性表征,以告知治疗和诊断决策。心电图(ECG)是用于心脏诊断的最广泛使用的临床工具。然而,它的解释被心脏和躯干的功能和解剖变异性混淆。在这项研究中,我们开发了新的计算技术,以利用非侵入性心电图和基于图像的躯干式建模和仿真之间的协同作用来估计单个受试者的关键心室激活特性。更确切地说,我们提出了一种有效的顺序蒙特卡洛近似基于贝叶斯计算的推理方法,该方法与基于临床心脏磁共振(CMR)成像构建的Eikonal模拟和躯干二心模型集成在一起。该方法还包括一种新的策略,用于治疗连续的(传导速度)和离散(最早的激活位点)参数空间,以及有效的基于基于动态的动态时间扭曲的ECG比较算法。我们证明了我们的推理方法的结果,该组合的二十个虚拟受试者的心脏体积范围为74 cm3至171 cm3,并考虑了内膜离散化的低分辨率(这决定了最早的激活位点的可能位置)。结果表明,我们的方法可以从非侵入性数据中成功地推断出心室的心室激活特性,对于最早的激活位点,窦性节律中最早的激活位点,心内膜速度和板(透壁)速度的准确性更高,而不是纤维或片状正常速度。
The realisation of precision cardiology requires novel techniques for the non-invasive characterisation of individual patients' cardiac function to inform therapeutic and diagnostic decision-making. The electrocardiogram (ECG) is the most widely used clinical tool for cardiac diagnosis. Its interpretation is, however, confounded by functional and anatomical variability in heart and torso. In this study, we develop new computational techniques to estimate key ventricular activation properties for individual subjects by exploiting the synergy between non-invasive electrocardiography and image-based torso-biventricular modelling and simulation. More precisely, we present an efficient sequential Monte Carlo approximate Bayesian computation-based inference method, integrated with Eikonal simulations and torso-biventricular models constructed based on clinical cardiac magnetic resonance (CMR) imaging. The method also includes a novel strategy to treat combined continuous (conduction speeds) and discrete (earliest activation sites) parameter spaces, and an efficient dynamic time warping-based ECG comparison algorithm. We demonstrate results from our inference method on a cohort of twenty virtual subjects with cardiac volumes ranging from 74 cm3 to 171 cm3 and considering low versus high resolution for the endocardial discretisation (which determines possible locations of the earliest activation sites). Results show that our method can successfully infer the ventricular activation properties from non-invasive data, with higher accuracy for earliest activation sites, endocardial speed, and sheet (transmural) speed in sinus rhythm, rather than the fibre or sheet-normal speeds.