论文标题
分叉子系统对称纠缠重新归一化的二维
Bifurcating subsystem symmetric entanglement renormalization in two dimensions
论文作者
论文摘要
我们介绍了子系统对称性的真实空间纠缠重新归一化组,并将其应用于两个空间维度,由线性和分形子系统对称性保护拓扑阶段产生的分叉流。我们对子系统对称群集状态给出的所有分叉固定点分类为每个单位单元格两个量子位。特别是,我们发现方格簇状态是一个商构成的固定点,而从吉田的一阶分形旋转液体模型得出的群集状态是自构型的固定点。我们讨论了分叉的对称对称性的重新归一化组的相关性,以分类和等效性的对称对称性保护拓扑阶段的分类和等效性。
We introduce the subsystem symmetry-preserving real-space entanglement renormalization group and apply it to study bifurcating flows generated by linear and fractal subsystem symmetry-protected topological phases in two spatial dimensions. We classify all bifurcating fixed points that are given by subsystem symmetric cluster states with two qubits per unit cell. In particular, we find that the square lattice cluster state is a quotient-bifurcating fixed point, while the cluster states derived from Yoshida's first order fractal spin liquid models are self-bifurcating fixed points. We discuss the relevance of bifurcating subsystem symmetry-preserving renormalization group fixed points for the classification and equivalence of subsystem symmetry-protected topological phases.