论文标题

通过平滑电势快速定位本征函数

Fast localization of eigenfunctions via smoothed potentials

论文作者

Lu, Jianfeng, Murphey, Cody, Steinerberger, Stefan

论文摘要

我们研究了预测有限域中$( - δ+v)ϕ =λ$ $ω\ subset \ mathbb {r}^d $的问题的问题$(δ+v)ϕ =λϕ $,以迅速变化。 Filoche&Mayboroda引入了功能$ 1/U $,其中$( - δ+ V)u = 1 $,作为$ V $的合适正规化,从其最小者可以预测具有很高准确性的特征函数的位置。我们提出了一种快速产生非常相似的景观的快速方法,可以用于相同的目的,并且可以非常有效地计算:例如,在$ n \ times n $ grid上的计算时间,例如,仅$ \ mathcal {o}(o}(n^2 \ log log {n})$,这是两个Ffts的成本。

We study the problem of predicting highly localized low-lying eigenfunctions $(-Δ+V) ϕ= λϕ$ in bounded domains $Ω\subset \mathbb{R}^d$ for rapidly varying potentials $V$. Filoche & Mayboroda introduced the function $1/u$, where $(-Δ+ V)u=1$, as a suitable regularization of $V$ from whose minima one can predict the location of eigenfunctions with high accuracy. We proposed a fast method that produces a landscapes that is exceedingly similar, can be used for the same purposes and can be computed very efficiently: the computation time on an $n \times n$ grid, for example, is merely $\mathcal{O}(n^2 \log{n})$, the cost of two FFTs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源