论文标题
一般连续时空模型的最大近似可能性估计
Maximum approximate likelihood estimation of general continuous-time state-space models
论文作者
论文摘要
连续时间状态空间模型(SSM)是用于分析由基础状态过程驱动的不规则采样顺序观察的灵活工具。相应的应用程序通常涉及有关线性和高斯性的限制性假设,以通过Kalman滤波器促进模型参数。在这一贡献中,我们提供了一个一般的连续时间SSM框架,使观察过程和状态过程都是非线性和非高斯。统计推断是通过最大近似似然估计进行的,其中在可能性评估中进行多个数值集成是通过对状态过程的良好离散化进行的。 SSM作为连续时间隐藏的Markov模型的相应重新标记,具有结构化状态过渡,使我们能够将相关的有效算法应用于参数估计和状态解码。我们在案例研究中使用了关于德国青少年违法行为的纵向研究的数据说明了建模方法,这揭示了个人犯罪水平偏离人口平均值的时间持久性。
Continuous-time state-space models (SSMs) are flexible tools for analysing irregularly sampled sequential observations that are driven by an underlying state process. Corresponding applications typically involve restrictive assumptions concerning linearity and Gaussianity to facilitate inference on the model parameters via the Kalman filter. In this contribution, we provide a general continuous-time SSM framework, allowing both the observation and the state process to be non-linear and non-Gaussian. Statistical inference is carried out by maximum approximate likelihood estimation, where multiple numerical integration within the likelihood evaluation is performed via a fine discretisation of the state process. The corresponding reframing of the SSM as a continuous-time hidden Markov model, with structured state transitions, enables us to apply the associated efficient algorithms for parameter estimation and state decoding. We illustrate the modelling approach in a case study using data from a longitudinal study on delinquent behaviour of adolescents in Germany, revealing temporal persistence in the deviation of an individual's delinquency level from the population mean.