论文标题

学会为有效的运动计划生成成本到行驶的功能

Learning to Generate Cost-to-Go Functions for Efficient Motion Planning

论文作者

Huh, Jinwook, Xing, Galen, Wang, Ziyun, Isler, Volkan, Lee, Daniel D.

论文摘要

传统的运动计划在实用机器人方面是计算繁重的,涉及大量的碰撞检查和成本值的相当迭代传播。我们提出了一种新颖的神经网络体系结构,该架构可以直接生成给定配置空间和目标配置的成本为GO(C2G)功能。网络的输出是连续函数,其在配置空间中的梯度可直接用于在运动计划中生成轨迹,而无需持久的迭代或大量的碰撞检查。此高阶函数(即生成另一个函数的函数)表示位于我们的运动计划体系结构C2G-HOF的核心,它可以将工作空间作为输入,并在配置空间图(C-MAP)上生成成本到GO的功能。 2D和3D环境的仿真结果表明,在执行时间比探索执行过程中配置空间的方法可以比执行时间更快的数量级。我们还提出了C2G-HOF的实现,该实现直接从工作空间的高架图像中生成了机器人操纵器的轨迹。

Traditional motion planning is computationally burdensome for practical robots, involving extensive collision checking and considerable iterative propagation of cost values. We present a novel neural network architecture which can directly generate the cost-to-go (c2g) function for a given configuration space and a goal configuration. The output of the network is a continuous function whose gradient in configuration space can be directly used to generate trajectories in motion planning without the need for protracted iterations or extensive collision checking. This higher order function (i.e. a function generating another function) representation lies at the core of our motion planning architecture, c2g-HOF, which can take a workspace as input, and generate the cost-to-go function over the configuration space map (C-map). Simulation results for 2D and 3D environments show that c2g-HOF can be orders of magnitude faster at execution time than methods which explore the configuration space during execution. We also present an implementation of c2g-HOF which generates trajectories for robot manipulators directly from an overhead image of the workspace.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源