论文标题
渐近范围的局部可修复代码速率
Asymptotic Bounds on the Rate of Locally Repairable Codes
论文作者
论文摘要
新的渐近上限以局部可维修代码(LRC)的序列速率呈现,其规定的相对最小距离和有限场上的位置$ f $。边界适用于恢复函数是线性的LRC;特别是,界限适用于$ f $以上的线性LRC。新的界限显示出可以改善先前发表的结果,尤其是当维修组不相交时,即它们形成了一组坐标的分区。
New asymptotic upper bounds are presented on the rate of sequences of locally repairable codes (LRCs) with a prescribed relative minimum distance and locality over a finite field $F$. The bounds apply to LRCs in which the recovery functions are linear; in particular, the bounds apply to linear LRCs over $F$. The new bounds are shown to improve on previously published results, especially when the repair groups are disjoint, namely, they form a partition of the set of coordinates.