论文标题

可区分的开放常识性推理

Differentiable Open-Ended Commonsense Reasoning

论文作者

Lin, Bill Yuchen, Sun, Haitian, Dhingra, Bhuwan, Zaheer, Manzil, Ren, Xiang, Cohen, William W.

论文摘要

当前的常识性推理研究重点是开发使用常识知识来回答多项选择问题的模型。但是,旨在回答多项选择问题的系统在不提供少数候选人答案的应用程序中可能没有用。为了使常识性推理研究更现实,我们建议研究开放式的常识性推理(OPENCSR) - 回答常识性问题而无需任何预定义的选择的任务 - 仅作为资源作为一种以自然语言编写的常识性事实。 OpenCSR由于较大的决策空间而具有挑战性,并且由于许多问题需要隐式多跳的推理。作为对OpenCSR的一种方法,我们提出了DRFACT,这是一种有效的可区分模型,用于对知识事实进行多跳的推理。为了评估OpenCSR方法,我们适应了几个流行的常识性推理基准,并通过人群来为每个测试问题收集多个新答案。实验表明,DRFACT的表现超过了强大的基线方法。

Current commonsense reasoning research focuses on developing models that use commonsense knowledge to answer multiple-choice questions. However, systems designed to answer multiple-choice questions may not be useful in applications that do not provide a small list of candidate answers to choose from. As a step towards making commonsense reasoning research more realistic, we propose to study open-ended commonsense reasoning (OpenCSR) -- the task of answering a commonsense question without any pre-defined choices -- using as a resource only a corpus of commonsense facts written in natural language. OpenCSR is challenging due to a large decision space, and because many questions require implicit multi-hop reasoning. As an approach to OpenCSR, we propose DrFact, an efficient Differentiable model for multi-hop Reasoning over knowledge Facts. To evaluate OpenCSR methods, we adapt several popular commonsense reasoning benchmarks, and collect multiple new answers for each test question via crowd-sourcing. Experiments show that DrFact outperforms strong baseline methods by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源