论文标题

复合条件,Fréchet-Hoeffding边界和Frank T-Norms

Compound conditionals, Fréchet-Hoeffding bounds, and Frank t-norms

论文作者

Gilio, Angelo, Sanfilippo, Giuseppe

论文摘要

在本文中,我们考虑了复合条件,Fréchet-Hoeffding边界以及对Frank T-norms的概率解释。通过研究合适的线性系统的可溶性,我们在逻辑独立性下显示了Fréchet-Hoeffding边界的清晰度,以预防$ n $条件事件的连词和析取。我们通过验证它是凸的,研究了包含$ n $有条件事件的家庭的所有连贯预防评估及其连词的集合。我们讨论了通过Lukasiewicz T-Norms评估连词的预防并为线性系统提供明确的解决方案的情况。然后,我们分析了选定的示例。我们分别对有条件事件的结合和析出分别获得了对坦率的T-norms和T-conorms的概率解释。然后,我们通过使用Frank T-norms或Frank T-Conorms来表征包含$ n $有条件事件的家庭及其结合或脱节的家庭的连贯预防评估。通过假设逻辑独立性,我们表明,两个有条件事件的弗兰克t-norm(分别,t-conorm)$ a | h $ a | h $ a | h $ a | h $ a | h $,$t_λ(a | h,b | k)$(分别,$s_λ(a | h,b | k)是一个连接$(a | h) (b | k)$)。通过考虑一个家庭$ \ MATHCAL {F} $包含三个条件事件,它们的连词以及所有成对的连词,我们就可以对Frank T-norms和对$ \ Mathcal {f} $的预防评估进行一些结果。通过假设逻辑独立性,我们表明,通过最小值和产物T-norms评估所有连词的预防是一致的。我们通过反例验证,当通过Lukasiewicz t-norm评估连词的预防时,就不会确保连贯性。

In this paper we consider compound conditionals, Fréchet-Hoeffding bounds and the probabilistic interpretation of Frank t-norms. By studying the solvability of suitable linear systems, we show under logical independence the sharpness of the Fréchet-Hoeffding bounds for the prevision of conjunctions and disjunctions of $n$ conditional events. We study the set of all coherent prevision assessments on a family containing $n$ conditional events and their conjunction, by verifying that it is convex. We discuss the case where the prevision of conjunctions is assessed by Lukasiewicz t-norms and we give explicit solutions for the linear systems; then, we analyze a selected example. We obtain a probabilistic interpretation of Frank t-norms and t-conorms as prevision of conjunctions and disjunctions of conditional events, respectively. Then, we characterize the sets of coherent prevision assessments on a family containing $n$ conditional events and their conjunction, or their disjunction, by using Frank t-norms, or Frank t-conorms. By assuming logical independence, we show that any Frank t-norm (resp., t-conorm) of two conditional events $A|H$ and $B|K$, $T_λ(A|H,B|K)$ (resp., $S_λ(A|H,B|K)$), is a conjunction $(A|H)\wedge (B|K)$ (resp., a disjunction $(A|H)\vee (B|K)$). By considering a family $\mathcal{F}$ containing three conditional events, their conjunction, and all pairwise conjunctions we give some results on Frank t-norms and coherence of the prevision assessments on $\mathcal{F}$. By assuming logical independence, we show that it is coherent to assess the previsions of all the conjunctions by means of Minimum and Product t-norms. We verify by a counterexample that, when the previsions of conjunctions are assessed by the Lukasiewicz t-norm, coherence is not assured.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源