论文标题

使用机器学习的光学卫星和网络摄像头的瑞士湖泊中的冰监测

Ice Monitoring in Swiss Lakes from Optical Satellites and Webcams using Machine Learning

论文作者

Tom, Manu, Prabha, Rajanie, Wu, Tianyu, Baltsavias, Emmanuel, Leal-Taixe, Laura, Schindler, Konrad

论文摘要

对气候指标的持续观察,例如湖泊冷冻趋势,对于了解当地和全球气候系统的动态非常重要。因此,湖ICE已被包括在全球气候观察系统(GCO)的基本气候变量(ECV)中,并且有必要设置操作监测能力。多阶段的卫星图像和公开可用的网络摄像头流是监视湖冰的可行数据源。在这项工作中,我们研究了基于机器学习的图像分析,以确定瑞士高山湖上冰的时空范围,以及来自多光谱光学卫星图像(VIIRS和MODIS)和RGB Webcam图像的冰上和冰期日期。我们将湖冰监测模型为像素的语义分割问题,即湖面上的每个像素都被分类以获得冰盖的空间显式图。我们通过实验表明,在对来自多个冬季和湖泊的数据进行测试时,提出的系统会产生持续的良好结果。我们基于卫星的方法获得了两个传感器的平均相交(MIOU)得分> 93%。它还在MIOU得分> 78%和80%的湖泊和冬季中遍布整个湖泊和冬季。平均而言,我们的网络摄像头方法分别在不同的摄像机和冬天的MIOU值分别达到87%(大约)和71%(大约)和69%(大约)(大约)的MIOU值。此外,我们提出了一个新的网络摄像头图像(Photi-Lakeice)的基准数据集,其中包括来自两个冬季和三个摄像机的数据。

Continuous observation of climate indicators, such as trends in lake freezing, is important to understand the dynamics of the local and global climate system. Consequently, lake ice has been included among the Essential Climate Variables (ECVs) of the Global Climate Observing System (GCOS), and there is a need to set up operational monitoring capabilities. Multi-temporal satellite images and publicly available webcam streams are among the viable data sources to monitor lake ice. In this work we investigate machine learning-based image analysis as a tool to determine the spatio-temporal extent of ice on Swiss Alpine lakes as well as the ice-on and ice-off dates, from both multispectral optical satellite images (VIIRS and MODIS) and RGB webcam images. We model lake ice monitoring as a pixel-wise semantic segmentation problem, i.e., each pixel on the lake surface is classified to obtain a spatially explicit map of ice cover. We show experimentally that the proposed system produces consistently good results when tested on data from multiple winters and lakes. Our satellite-based method obtains mean Intersection-over-Union (mIoU) scores >93%, for both sensors. It also generalises well across lakes and winters with mIoU scores >78% and >80% respectively. On average, our webcam approach achieves mIoU values of 87% (approx.) and generalisation scores of 71% (approx.) and 69% (approx.) across different cameras and winters respectively. Additionally, we put forward a new benchmark dataset of webcam images (Photi-LakeIce) which includes data from two winters and three cameras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源