论文标题

使用Sentinel-2和Landsat 8

Above-ground biomass change estimation using national forest inventory data with Sentinel-2 and Landsat 8

论文作者

Puliti, Stefano, Breidenbach, Johannes, Schumacher, Johannes, Hauglin, Marius, Klingenberg, Torgeir Ferdinand, Astrup, Rasmus

论文摘要

这项研究旨在根据使用自由可用的卫星图像的模型辅助估计来估算五年(2014 - 2019年)在五年(2014-2019)上估算森林总净变化(Delta AGB)。这项研究是针对挪威的北方森林地区(约1.4磨房)进行的,那里有双性国家森林库存(NFI),Sentinel-2和Landsat数据。生物量变化是根据直接方法建模的。将仅使用基本扩展估计量中NFI数据的估计值与使用Sentinel-2或LandSAT数据的四个不同的替代模型辅助估计值进行了比较,以及2)使用BI-或Uni-Stormoral远程感知的数据。我们发现,远程感知的数据的使用提高了纯粹的基于场的估计值的精度,最多可以提高三个。对于使用双阶前哨兵2(标准误差; SE = 1.7 MT)的模型辅助估计,发现了最精确的估计值。但是,使用Landsat数据时的精度降低很小(SE = 1.92 MT)。此外,我们发现,只有在监视期结束时才能获得远程感知的数据时,也可以精确估计三角洲AGB。我们得出的结论是,即使在有重复和重合的NFI数据的情况下,卫星光学数据也可以大大改善DELTA AGB估计值。免费的可用性,全球覆盖范围,频繁的更新和长期时间范围从Sentinel-2和Landsat之类的程序中提供了数据,可以对森林碳动态进行一致且持久的监控。

This study aimed at estimating total forest above-ground net change (Delta AGB, Mt) over five years (2014-2019) based on model-assisted estimation utilizing freely available satellite imagery. The study was conducted for a boreal forest area (approx. 1.4 Mill hectares) in Norway where bi-temporal national forest inventory (NFI), Sentinel-2, and Landsat data were available. Biomass change was modelled based on a direct approach. The precision of estimates using only the NFI data in a basic expansion estimator were compared to four different alternative model-assisted estimates using 1) Sentinel-2 or Landsat data, and 2) using bi- or uni-temporal remotely sensed data. We found that the use of remotely sensed data improved the precision of the purely field-based estimates by a factor of up to three. The most precise estimates were found for the model-assisted estimation using bi-temporal Sentinel-2 (standard error; SE= 1.7 Mt). However, the decrease in precision when using Landsat data was small (SE= 1.92 Mt). In addition, we found that Delta AGB could be precisely estimated also when remotely sensed data were available only at the end of the monitoring period. We conclude that satellite optical data can considerably improve Delta AGB estimates, even in those cases where repeated and coincident NFI data are available. The free availability, global coverage, frequent update, and long-term time horizon make data from programs such as Sentinel-2 and Landsat a valuable data source for a consistent and durable monitoring of forest carbon dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源