论文标题
同源交集空间上同源交叉数字的树膨胀公式$ \ MATHCAL {M} _ {0,N} $
A tree expansion formula of a homology intersection numbers on the configuration space $\mathcal{M}_{0,n}$
论文作者
论文摘要
在\ cite {m}中,塞巴斯蒂安·米泽拉(Sebastian Mizera)在配置空间上发现了同源交集号的树膨胀公式$ \ nathcal {m} _ {0,n} $。该公式起源于弦理论中的Kawai-Lewellen-Tye关系的研究。在本文中,我们给出了公式的基本证明。基本成分是真实模量空间$ \ overline {\ Mathcal {m}} _ {0,n}(\ r)$的组合和组合标识与Associahedron的面部数相关的组合身份。
In \cite{M}, Sebastian Mizera discovered a tree expansion formula of a homology intersection number on the configuration space $\mathcal{M}_{0,n}$. The formula originates in a study of Kawai-Lewellen-Tye relation in string theory. In this paper, we give an elementary proof of the formula. The basic ingredients are the combinatorics of the real moduli space $\overline{\mathcal{M}}_{0,n}(\R)$ and a combinatorial identity related to the face number of the associahedron.