论文标题
$(p,q)$ - laplacian的特征值集的完整说明,带有steklov的边界条件
Full description of the eigenvalue set of the $(p,q)$-Laplacian with a Steklov-like boundary condition
论文作者
论文摘要
在本文中,我们在有限的域中考虑$ω\ subset \ mathbb {r}^n $具有平稳边界的负$(p,q)$ - laplacian的特征值问题,具有类似于steklov的边界条件,其中$ p,\,其中(1,\ infty)$ p \ p \ p \ n n n n n n n n qu $ p,包括$ p,包括$ q \ in(1,2)$,$ p \ neq Q $。提供了此问题的特征值集的完整描述。我们的结果补充了Abreu和Madeira \ Cite {Am},Barbu和Moroşanu\ Cite {Bm},Fărcăşeanu,mihăilescu和Stancu-dumitru \ cite {bm},mihinilescu \ cite {mihăilescu\ cite {mmihileiles {mmihileiles and mihileiles and mih} \ cite {mm}。
In this paper we consider in a bounded domain $Ω\subset \mathbb{R}^N$ with smooth boundary an eigenvalue problem for the negative $(p,q)$-Laplacian with a Steklov-like boundary condition, where $p,\, q\in (1,\infty)$, $p\neq q$, including the open case $p\in (1,\infty)$, $q\in (1, 2)$, $p\neq q$. A full description of the set of eigenvalues of this problem is provided. Our results complement those previously obtained by Abreu and Madeira \cite{AM}, Barbu and Moroşanu \cite{BM}, Fărcăşeanu, Mihăilescu and Stancu-Dumitru \cite{FMS}, Mihăilescu \cite{MMih}, Mihăilescu and Moroşanu \cite{MM}.