论文标题
多项式Julia集的局部连通性在有限类型的Siegel边界
Local Connectivity of Polynomial Julia sets at Bounded Type Siegel Boundaries
论文作者
论文摘要
考虑一个多项式$ f $ f $ $ d \ geq 2 $,其具有siegel disk $δ_f$,旋转数字的旋转数。我们证明,不存在包含$Δ_F$的刺猬。此外,如果连接了$ f $的朱莉娅设置$ j_f $,则它是在siegel边界$ \partialΔ_f$的本地连接的。
Consider a polynomial $f$ of degree $d \geq 2$ that has a Siegel disk $Δ_f$ with a rotation number of bounded type. We prove that there does not exist a hedgehog containing $Δ_f$. Moreover, if the Julia set $J_f$ of $f$ is connected, then it is locally connected at the Siegel boundary $\partial Δ_f$.