论文标题

一个依赖路径的变异框架,用于收集的增量信息

A Path-Dependent Variational Framework for Incremental Information Gathering

论文作者

Clark, William, Ghaffari, Maani

论文摘要

沿着路径收集的信息本质上是下次的。由于冗余观测值,沿路径获得的增量量减少。除了分二次,获得的信息不仅是当前状态的函数,而且是整个历史记录的函数。本文介绍了记忆(依赖历史)拉格朗日的一阶必要最佳条件的构建。与路径相关的问题经常出现在机器人技术和人工智能中,其中诸如地图之类的状态是可以观察到的,并且只能通过局部传感沿轨迹获得信息。机器人探索和环境监测具有许多现实世界应用,可以使用拟议的方法来配制。

Information gathered along a path is inherently submodular; the incremental amount of information gained along a path decreases due to redundant observations. In addition to submodularity, the incremental amount of information gained is a function of not only the current state but also the entire history as well. This paper presents the construction of the first-order necessary optimality conditions for memory (history-dependent) Lagrangians. Path-dependent problems frequently appear in robotics and artificial intelligence, where the state such as a map is partially observable, and information can only be obtained along a trajectory by local sensing. Robotic exploration and environmental monitoring has numerous real-world applications and can be formulated using the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源