论文标题

Bose-Einstein冷凝物的二元混合物中巨大点涡流的动力学

Dynamics of massive point vortices in binary mixture of Bose-Einstein condensates

论文作者

Richaud, Andrea, Penna, Vittorio, Fetter, Alexander L.

论文摘要

我们研究了参考文献中引入的大量点涡流模型。 [物理。 Rev. A 101,013630(2020)],它描述了一个物种的二维点涡旋,这些物种具有不同物种的小核。我们基于带有两分量Gross-Pitaevskii(GP)试验的时间依赖性变异方法来得出相关的拉格朗日本身。所得的拉格朗日类似于静态电磁场中带电颗粒的拉格朗日,其中规范动量包括电磁项。最简单的示例是具有刚性圆形边界的单个涡流,其中无质量的涡流只能均匀地进行进攻。相比之下,存在足够大的填充涡流核心呈现等不稳定的核心。小核心质量也会导致小径向振荡,这反过来又是相关惯性作用的明确证据。对具有单个涡流和小的第二组分核心耦合的两组分GP方程的详细数值分析证实了这种径向振荡的存在,这意味着这种更现实的GP涡流也像具有小的巨大核心一样。

We study the massive point-vortex model introduced in Ref. [Phys. Rev. A 101, 013630 (2020)], which describes two-dimensional point vortices of one species that have small cores of a different species. We derive the relevant Lagrangian itself, based on the time-dependent variational method with a two-component Gross-Pitaevskii (GP) trial function. The resulting Lagrangian resembles that of charged particles in a static electromagnetic field, where the canonical momentum includes an electromagnetic term. The simplest example is a single vortex with a rigid circular boundary, where a massless vortex can only precess uniformly. In contrast, the presence of a sufficiently large filled vortex core renders such precession unstable. A small core mass can also lead to small radial oscillations, which are, in turn, clear evidence of the associated inertial effect. Detailed numerical analysis of coupled two-component GP equations with a single vortex and small second-component core confirms the presence of such radial oscillations, implying that this more realistic GP vortex also acts as if it has a small massive core.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源