论文标题
单侧双模块问题的盖洛伊斯覆盖物
Galois Coverings of One-Sided Bimodule Problems
论文作者
论文摘要
采用$ 2 $维细胞复杂理论的几何方法,我们构建了一个涵盖双模块问题的galois,以满足某些结构,三角形和有限性条件,以描述有限表示类型的对象。每个接收的Bimodule问题$ \ Mathcal a $均以准乘法为基础。主要结果表明,对于考虑到具有一些有限限制的考虑的问题,Schurian通用覆盖$ \ tilde {\ Mathcal a} $($ \ Mathcal a $ a $ as $ is schurian is as schurian,或其基本的bigraph都包含一个点的循环,或者它具有标准的标准最小的非Schurian bimodian bimodule。
Applying geometric methods of $2$-dimensional cell complex theory, we construct a Galois covering of a bimodule problem satisfying some structure, triangularity and finiteness conditions in order to describe the objects of finite representation type. Each admitted bimodule problem $\mathcal A$ is endowed with a quasi multiplicative basis. The main result shows that for a problem from the considered class having some finiteness restrictions and the schurian universal covering $\tilde{\mathcal A}$, either $\mathcal A$ is schurian, or its basic bigraph contains a dotted loop, or it has a standard minimal non-schurian bimodule subproblem.